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Multilevel Non-Linear Models 

Introduction to Multilevel Modeling 

 
The analysis of data with a hierarchical structure has been described in the literature 
under various names. It is known as hierarchical modeling, random coefficient modeling, 
latent curve modeling, growth curve modeling or multilevel modeling. The basic 
underlying structure of measurements nested within units at a higher level of the 
hierarchy is, however, common to all. In a repeated measurements growth model, for 
example, the measurements or outcomes are nested within the experimental units (second 
level units) of the hierarchy.  
 
Ignoring the hierarchical structure of data can have serious implications, as the use of 
alternatives such as aggregation and disaggregation of information to another level can 
induce high collinearity among predictors and large or biased standard errors for the 
estimates. Standard fixed parameter regression models do not allow for the exploration of 
variation between groups, which may be of interest in its own right. For a discussion of 
the effects of these alternatives, see Bryk and Raudenbush (1992), Longford  (1987) and 
Rasbash (1993). 
 
Multilevel or hierarchical modeling provides the opportunity to study variation at 
different levels of the hierarchy. Such a model can also include separate regression 
coefficients at different levels of the hierarchy that have no meaning without recognition 
of the hierarchical structure of the population. The dependence of repeated measurements 
belonging to one experimental unit in a typical growth curve analysis, for example, is 
taken into account with this approach. In addition, the data to be analyzed need not be 
balanced in nature.  This has the advantage that estimates can also be units for which a 
very limited amount of information is available.  
 

Multilevel Non-Linear Regression Models 

 
It was pointed out by Pinheiro and Bates (2000) that one would want to use nonlinear 
latent coefficient models for reasons of interpretability, parsimony, and more 
importantly, validity beyond the observed range of the data. 
 
By increasing the order of a polynomial model, one can get increasingly accurate 
approximations to the true, usually nonlinear, regression function, within the range of the 
observed data. High order polynomial models often result in multicollinearity problems 
and provide no theoretical considerations about the underlying mechanism producing the 
data. 
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There are many possible nonlinear regression models to select from. Examples are given 
by Gallant (1987) and Pinheiro and Bates (2000). The Richards function (Richards, 1959) 
is a generalization of a family of non-linear functions and is used to describe growth 
curves (Koops, 1988). Three special cases of the Richards function are the logistic, 
Gompertz and Monomolecular functions, respectively. Presently, one can select curves of 
the form 

1 2( ) ( )y f x f x e= + +  

where the first component, 1( )f x  may have the form: 
 

• logistic: 1

2 3(1 exp( )
b

s b b x+ −
 

• Gompertz: 1 2 3exp( exp( ))b b b x− −  
• Monomolecular: 1 2 3(1 exp( ))b s b b x+ −  

• power: 2
1

bb x  
• exponential: 1 2exp( )b b x−  

The second component, 2 ( )f x , may have the form: 

• logistic: 1

2 3(1 exp( )
c

s c c x+ −
 

• Gompertz: 1 2 3exp( exp( ))c c c x− −  
• Monomolecular: 1 2 3(1 exp( ))c s c c x+ −  

• power: 2
1

cc x  
• exponential: 1 2exp( )c c x−  

 
In the curves above s denotes the sign of the term 2 3exp( )b b x−  and is equal to 1 or -1. 
 
Since the parameters in the first three functions above have definite physical meanings, a 
curve from this family is preferred to a polynomial curve, which may often be fitted to a 
set of responses with the same degree of accuracy. The parameter 1b  represents the time 
asymptotic value of the characteristic that has been measured, the parameter 2b  
represents the potential increase (or decrease) in the value of the function during the 
course of time 1t  to pt , and the parameter 3b  characterizes the rate of growth.  
 
The coefficients 1 2 3, , ,b b cK  are assumed to be random, and, as in linear hierarchical 
models, can be written as level-2 outcome variables where 
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It is assumed that the level-2 residuals 1 2 6, , ,u u uK  have a normal distribution with zero 
means and covariance matrix Φ . In LISREL, it may further be assumed that the values of 
any of the random coefficients are affected by some level-2 covariate so that, in general,  
 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

1 4 4 4 4

2 5 5 5 5

3 6 6 6 6.

b z u
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b z u
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β γ
β γ
β γ
β γ
β γ
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= + +
= + +
= + +
= + +
= + +
= + +

 

where iz  denotes the value of a covariate and iγ  the corresponding coefficient. 
 
It is usually sufficient to select a single component 1( ( ))f x  to describe a large number of 
monotone increasing (or decreasing) growth patterns. 
 
To describe more complex patterns, use can be made of two-component regression 
models. LISREL allows the user to select any of the 5 curve types as component 1 and to 
combine it with any one of the 5 curve types for the second component.  
 
Valid choices are, for example, 
 

• Monomolecular + Gompertz 
• logistic 
• exponential + logistic 
• logistic + logistic 

 
The unknown model parameters are the vector of fixed coefficients ( )β , the vector of 
covariate coefficients ( )γ , the covariance matrix ( )Φ  of the level-2 residuals and the 
variance 2( )σ  of the level-1 measurement errors. See Chapter 5 for an example of fitting 
of a multilevel nonlinear model. Additional examples are given in the nonlinex folder. 
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Estimation Procedure for Multilevel Non-Linear Regression Models 
 

In linear multilevel models, y has a normal distribution, since y is a linear combination of 
the random coefficients. For example, the intercept-and-slopes-as-outcomes model is 
 

1 2y b b x e= + +  
 
where 1 1 2 2,b u b u= =  and 1 2( , )u u  is assumed to be normally distributed. 
 
A multilevel nonlinear model is a regression model which cannot be expressed as a linear 
combination of its coefficients and therefore y is no longer normally distributed. The 
probability density function of y can be evaluated as the multiple integral 

 

 

1 3

1 3 1 3( ) ( , , , )
b c

f y f y b c db dc= ∫ ∫K K K  

 
that, in general, cannot be solved in closed form. 
 
 
To evaluate the likelihood function 

 

 
1

( )
n

i
i

L f y
=

=∏ , 

 

one has to use a numerical integration technique. We assume that e has a 2(0, )N σ  
distribution and that 1 2 3 1 2 3( , , , , , )b b b c c c  has a 2( , )N 0 Φ  distribution. 
 
In the multilevels procedure, use is made of a Gauss quadrature procedure to evaluate the 
integrals numerically. The ML method requires good starting values for the unknown 
parameters. The estimation procedure is described by Cudeck and du Toit (in press). 
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Starting values 
 
Once a model is selected to describe the nonlinear pattern in the data, for example as 
revealed by a plot of y on x, a curve is fitted to each individual using ordinary non-linear 
least squares. 
 
In step 1 of the fitting procedure, these OLS parameter estimates are written to a file and 
estimates of β  and Φ  are obtained by using the sample means and covariances of the set 
of fitted parameters. Since observed values from some individual cases may not be 
adequately described by the selected model, these cases can have excessively large 
residuals, and it may not be advisable to include them in the calculation of the β  and Φ  
estimates. 
 
In step 2 of the model fitting procedure, use is made of the MAP (Maximum Aposterior) 
estimator of the unknown parameters. 
 
Suppose that a single component 1( , )f b x  is fitted to the data. Since 

 

 ( | ) ( ) ( | ) / ( ),f b y f b f y b f y=  

 
where ( | )f b y  is the conditional probability density function of the random coefficients 
b given the observations, it follows that 

 

 ln ( | ) ln ( ) ln ( | ) ,f b y f b f y b k= + +  

 
where ln ( )k f y= − . 
 
The MAP procedure can briefly be described as follows: 
 

Step a: 
 

Given starting values of β , Φ  and 2σ , obtain estimates of the random coefficients ib
∧

 
from 
 

 ln ( | ) 0, 1,2, , .i i
i

f b y i n
b
∂

= =
∂

K  
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Step b: 
 

Use the estimates 1 2, , , nb b b
∧ ∧ ∧

K  and 1( ), , ( )nCov b Cov b
∧ ∧

K  to obtain new estimates of β , 
Φ  and 2σ  (see Herbst, A. (1993) for a detailed discussion). 
 
 
Repeat steps a and b until convergence is attained. 
 
For many practical purposes, results obtained from the MAP procedure may be sufficient. 
However, if covariates are included in the model, parameter estimates are only available 
via the ML option, which uses the MAP estimates of β , Φ  and 2σ  as starting values. 
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