

V SUMMER SCHOOL | ONLINE MODELLING AND FORECASTING ENERGY MARKETS 30 August - 10 September 2021

In the last two decades, energy markets operators have witnessed major structural changes that have had a profund impact on how prices are determined on the market. Events like market liberalization, adoption of energy efficiency regulation, increased production from renewable energy sources, and climate change have contributed in making the demand and supply less predictable and the prices more volatile. The accurate modelling and forecasting of energy demand and prices has become of utmost importance, not only to energy producers themselves, but also to commodity traders and financial analysts focusing on the energy sector. The statistical features of energy data, which tends to follow periodic patterns and exhibit spikes, non-constant means and non-constant variances, renders the task of forecasting and modelling of energy data somewhat challenging.

The objective of TStat's "Modelling and Forecasting Energy Markets" Summer School is therefore to provide participants with the specific analytical tools to undertake a rigorous and in-depth analysis of both demand and prices in international energy markets.

The programme covers a wide range of econometric methods currently available to researchers and practitioners, such as: i) univariate and multivariate time series models for forecasting prices and demand; ii) univariate and multivariate GARCH models for forecasting price volatility and iii) cointegration models and panel data models for assessing the sensitivity of energy demand to price, income and climate variables and for constructing long-run policy scenarios.

Following TStat's training philosophy, the teaching style features both theoretical sessions, where participants are given the intuition behind the choice of a specific technique, and several practical sessions using econometric software. In this manner, the course leaders are able to bridge the "often difficult" gap between abstract theoretical methodologies, and the practical issues one encounters when dealing with real data.

The 2021 edition also includes an extended Case Study Group session during which participants will either work in small groups on a short applied case study or on a presentation of their own research work. Course leaders will discuss with participants the appropriateness of the methods adopted in their case study and the interpretation of the results obtained and will also provide feedback and guidance on possible future developments of individual research agendas.

SUMMER SCHOOL CODE

I-SS12-OL

PREREQUISITES

A knowledge of intermediate statistics and econometrics, such as that of Wooldridge, J.M. (2019) and/or Brooks, C. (2019), is required.

In particular, participants must be familiar with linear regression analysis, inference, regression misspecification issues and time series concepts of autocorrelation, stationarity and volatility.

During the Summer School, participants will be introduced to the econometric/statistical software **Stata**. Attendees do not however, require any previous knowledge of the software.

MODELLING AND FORECASTING ENERGY MARKETS

At the end of the School participants are expected to be in a position to autonomously conduct energy markets analysis. In particular, participants will be able to evaluate which econometric method is more appropriate to the analysis in hand and will be able to test the appropriateness of their estimated model and the robustness of the results obtained.

TARGET AUDIENCE

Researchers and professionals working either: i) in the energy and related sectors, needing to model energy price and demand, and ii) on trading desks in financial institutions. Economists based in research policy institutions. Students and researchers in engineering, econometrics and finance needing to learn the econometrics methods and tools applied in this field.

PROGRAMME

ENERGY DATA ANALYSIS

MODULE 1

MODULE 2

NATURAL GAS...)

SESSION I:

SESSION I: AN INTRODUCTION TO ENERGY DATA

- 1. Data cleaning and data preparation (creating logs, log-differences).
- 2. Graphical analysis of energy time series: line plots, distribution plots, sample correlograms.
- 3. Understanding non-stationarity and volatility from visual inspection of the time series.

SESSION II: ENERGY DATA ANALYSIS

- 1. Creating tables of descriptive statistics to understand the features of energy data.
- 2. Test for autocorrelation and heteroscedasticity. Normality test.
- 3. Unit root tests for checking nonstationary of energy time series.

TIME SERIES MODELS

- 1. Univariate time series models for modelling and forecasting energy prices (ARMA, ARIMA, ARFIMA, SARIMA). Diagnostic tests for univariate time series models.
- 2. Switching regressions for capturing stable and spiky regimes in energy prices
- 3. Practical applications: modelling and forecasting energy prices with univariate models using market data for OECD countries.
- SESSION II: MULTIVARIATE TIME SERIES MODELS FOR ENERGY DEMAND AND PRICES (ELECTRICITY, CRUDE OIL, NATURAL GAS...)

UNIVARIATE TIME SERIES MODELS

PRICES (ELECTRICITY, CRUDE OIL,

FOR ENERGY DEMAND AND

MODULE 3

SESSION I: UNIVARIATE GARCH MODELS FOR ESTIMATING AND FORECASTING ENERGY PRICES VOLATILITY (ELECTRICITY, CRUDE OIL, NATURAL GAS...)

- 1. Vector autoregressive (VAR) models for forecasting energy prices and for understanding interdependences between energy markets.
- 2. Granger predictability of energy prices.
- 3. Practical applications: modelling and forecasting energy prices with VAR models using market data for OECD countries.

VOLATILITY MODELS

- 1. ARCH, GARCH, GARCH-in-mean and IGARCH models for energy prices.
- 2. Inverse leverage effect in energy markets. Estimating asymmetric GARCH models (EGARCH, TGARCH, APARCH).
- 3. Practical applications: fitting symmetric and asymmetric GARCH models for energy prices volatility.

https://www.tstattraining.eu/training/modelling-energy-markets-ol/

MODELLING AND FORECASTING ENERGY MARKETS

SESSION II:

SESSION I:

MULTIVARIATE GARCH MODELS FOR ENERGY PRICES VOLATILITY AND CORRELATION (ELECTRICITY, CRUDE OIL, NATURAL GAS...)

- 1. VECH and Diagonal VECH models.
- 2. Constant Conditional Correlation (CCC) model, Dynamic Conditional Correlation Model (DCC) by Engle (2002) and Dynamic Conditional Correlation Model (DCC) by Tse and Tsui (2002).
- 3. Practical applications: testing for interdependencies between energy markets volatility using CCC and DCC models.

MODULE 4 COINTEGRATION MODELS

- 1. An introduction to the theory of cointegration.
- Cointegration models for energy data: autoregressive distributed lag models and error correction models. The Engle & Granger procedure and the Johansen's approach to cointegration.
- 3. Practical applications: Estimating energy demand models using market data for OECD countries.

SESSION II: APPLIED CASE STUDY ANALYSIS

COINTEGRATION MODELS OF

CRUDE OIL, NATURAL GAS...)

ENERGY DEMAND (ELECTRICITY,

1. In this session, participants will be encouraged to discuss their own research projects and data issues. Course leaders are available for feedback and guidance on how to deal with research projects.

MODULE 5 PANEL DATA MODELS

data.

SESSION I:

STATIC PANEL DATA MODELS

FOR ENERGY DEMAND (ELECTRICITY, CRUDE OIL,

- NATURAL GAS...)
- 3. Least squares dummy variables, within, between and GLS estimators. Hausman Test.

2. Fixed vs random effects models in typical (large N and small T) panels.

1. An introduction to panel data analysis: types of panel data, advantages of panel

- SESSION II:
- DYNAMIC PANEL DATA MODELS FOR ENERGY DEMAND (ELECTRICITY, CRUDE OIL, NATURAL GAS...)
- 1. An introduction to the Generalised Methods of Moments estimation approach.
- 2. Estimators for dynamic models. Anderson and Hsiao estimator, Arellano and Bond estimator, Blundell and Bond estimator.
- 3. Practical applications: modelling energy demand with a panel data approach using data for OECD countries.

COURSE REFERENCES

Introductory Econometrics: A Modern Approach. 7th Edition, Wooldridge, J.M. (2019).

Introductory Econometrics for Finance, Cengage Learning and/or Brooks, C. (2019), Cambridge University Press.

https://www.tstattraining.eu/training/modelling-energy-markets-ol/

MODELLING AND FORECASTING ENERGY MARKETS

DATE AND LOCATION

Due to the ongoing COVID-19 situation, the 2021 edition of this Summer School will be offered ONLINE on a part-time basis on the 30th of August to the 10th of September (excluding saturday and sunday) from 10:00 am to 1:30 pm Central European Summer Time (CEST).

A 45 minutes informal evening study group session will also be scheduled, during which participants are encouraged to discuss further issues arising from either the arguments addressed or practical sessions undertaken. The course leader will also be available during this session to offer feedback and guidance on how to deal with specific research issues.

COURSE LEADERS

Dr Elisabetta PELLINI, Centre for Econometric Analysis, Bayes Business School (formerly Cass), London (UK).

Professor Giovanni URGA, Centre for Econometric Analysis, Bayes Business School (formerly Cass), London (UK).

REGISTRATION DEADLINE

Individuals interested in attending this summer school must return their completed registration forms by e-mail training@tstat.eu to TStat by 15th August 2021.

CONTACTS

Monica Gianni

TStat Training | Kleebergstraße, 8 D-60322 Frankfurt am Main

TStat S.r.I. | Via Rettangolo, 12-14 I-67039 Sulmona (AQ) T. +39 0864 210101

training@tstat.eu www.tstattraining.eu www.tstat.eu

REGISTRATION FEES

The online Summer School fee amounts to:

Full-time Students*: € 1250.00 Full-time PhD Students: € 1490.00 Academic: € 1775.00 Commercial: € 2825.00

*To be eligible for full-time student prices, participants must provide proof of their **full-time** student status for the current academic year. Our standard policy is to provide all full-time students, be they Undergraduates or Masters, access to our student registration rates. Part-time master and doctoral students on the other hand, who are also currently employed will however, be assigned the standard academic registration fee.

Fees are subject to VAT (applied at the current Italian rate of 22%). However, under current EU fiscal regulations, VAT will not be applied to companies, institutions or universities, providing a valid tax registration number.

Please note that a *non-refundable deposit* of €100.00 for students and €250.00 for Academic and Commercial participants, is required to secure a place and is payable upon registration. The number of participants is limited to 15. Places will be allocated on a first come, first serve basis. The school will only be confirmed when at least 5 people have enrolled.

Course fee covers: teaching materials (handouts, Stata *do files* and datasets to used during the school), a temporary licence of Stata valid for 30 days from the beginning of the school.

Further details regarding our registration procedures, including our commercial terms and conditions, can be found at https://www.tstattraining.eu/training/modelling-energy-markets-ol/

