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Abstract

We present a Super–Learning Machine (SLM) to predict economic outcomes
which improves prediction (i) by cross–validated optimal tuning, (ii) by compar-
ing/combining results from different learners. Our application to a labor eco-
nomics dataset shows that different learners may behave differently. However,
combining learners into one singleton super–learner proves to preserve good
predictive accuracy lowering the variance more than stand-alone approaches.
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1 Introduction

The quest for an objective science is in a surge. In economics, some scholars have
recently stressed the need for sounder credibility and fairness of empirical research
(Angrist and Pischke, 2010). Machine Learning (ML), a relatively new approach to
data analysis, may help “taking the con out of econometrics”.

Placing itself in the intersection between statistics, computer science, and artifi-
cial intelligence, ML main objective is turning information into valuable knowledge by
“letting the data speak”, limiting model’s prior assumptions, and promoting a model-
free philosophy. Relying on algorithms and computational techniques, ML targetes
Big Data and complexity reduction, although sometimes at expenses of results’ inter-
pretability (Varian, 2014).

ML has emerged as a new scientific paradigm within numerous sciences, but its
use in economics and econometrics is still lagging behind. One shared belief among
economists is that ML is powerful for prediction, whereas less useful for inferential
purposes (Athey, 2019). Recently, however, a new econometric literature is trying
to bridge ML and causal inference through new ML–adapted methods able to tackle
causal inference issues, such as treatment effect estimation with high dimensional
data (Belloni, Chernozhukov, Hansen, 2014), heterogenous treatment effect estima-
tion (Athey and Wager, 2017), and optimal policy assignment (Athey and Imbens,
2017).

By focusing on the predictive use of ML, this paper presents a Super–Learning
Machine (SLM) to predict economic outcomes, both in regression and classification
settings. Concisely, a SLM is an ensemble ML toolbox aimed at improving prediction
of economic outcomes in two directions: (i) by targeting optimal modeling via cross-
validated optimal tuning ; (ii) by comparing and combining results from a large set of
learners instead of relying on one single method as usual done in economics1.

The illustrative application presented in this paper focuses on classification, but
the extension to regression is immediate. We aim at predicting the wage class (catego-
rized as “low”, “medium”, and “high”) of an individual based on her characteristics.
We do it by comparing (and then combining via a majority vote ensemble rule) eight
different cross-validated learners, stressing the role played not only by larger predic-
tive accuracy, but also by wider accuracy uncertainty.

The structure of the paper is as follows. Section 2 presents the SLM logic and
architecture. Section 3 illustrates our application and discusses the results. Section
4 concludes the paper.

2 The SLM architecture

I define a learner Lj as a mapping from the set [X, θ, λj, fj(·)] to an outcome y,
where X is the matrix of features, θ a vector of estimation parameters, λj a vector of
tuning parameters, and fj(·) an algorithm taking as inputs X, θ, and λj. Generally,

1The main reference on the statistics of the super–learning prediction can be found in Van der
Laan and Rose (2011).
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economists use a singleton fj(·) for modeling and predicting economic outcomes,
typically one member of the Generalized Linear Models (GLM) family (linear, probit
or multinomial regressions are classical examples). GLM are highly parametric and
are not characterized by tuning parameters. Nonparametric models, such as local–
kernel, nearest–neighbor, or tree regressions are on the contrary characterized by one
or more hyper-parameters λj which may be optimally chosen to minimize the so–
called test prediction error, i.e. the out–of–sample predicting accuracy of the learner.

Figure 1 presents the architecture of the SLM herein proposed. This framework is
made of three linked learning processes: (i) the learning over the tuning parameter λ,
(ii) the learning over the algorithm f(·), and (iii) the learning over new additional in-
formation. The departure is in point 1, from where we set off assuming the availability
of a dataset [X, y].

The first learning process aims at selecting the optimal tuning parameter(s) for a
given algorithm fj(·). ML scholars typically do it using K-fold cross–validation, a re-
sampling approach estimating the out–of–sample performance of a learner by leaving
one group of observations out of the estimation, and then using prediction over these
left-out observations to measure predictive accuracy. This procedure is iteratively
repeated for each fold, eventually obtaining K test–accuracy (or, equivalently, test
error) measures over which taking the average and the standard deviation.

Figure 1: The Super–Learning Machine architecture.

At the optimal λj, one can recover the largest possible prediction accuracy for the
learner fj(·). Further prediction improvements can be achieved only by learning from
other learners, namely, by exploring other fj(·), with j = 1, . . . ,M (where M is the
number of learners at hand).

It is important to observe that the so–called training error, i.e. the in–sample
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predictive performance of a learner, is a misleading measure of the actual model
fit as plagued by the overfitting phenomenon: it may be the case that the training
error decreases monotonically with the tuning parameter even if the out–of–sample
performance of the learner is worsening. In figure 1, it corresponds to the light blue
sequence of boxes leading to the MSETRAIN which is in fact a dead-end node, as not
informative for making correct decisions.

Conversely, the yellow sequence leads to the MSETEST , which is informative
to take correct decisions about the predicting quality of the current learner. At
this node, the analyst can compare the current MSETEST with a benchmark one
(possibly, pre–fixed), and conclude whether to predict using the current learner, or
explore alternative learners in the hope of increasing predictive performance. If the
level of the current prediction error is too high, the SLM would suggest to explore
other learners.

In the ML literature, learning over learners is called meta learning, and entails
an exploration of the out–of–sample performance of alternative algorithms fj(·) with
the goal of identifying one behaving better than the those already explored (Hastie,
Tibshirani, and Friedman, 2001). For each new fj(·), the SLM finds an optimal
tuning parameter and a new estimated accuracy (along with its standard deviation).
The analyst can either explore the entire bundle of alternatives and finally pick–up
the best one, or decide to select the first learner whose accuracy is larger than the
benchmark. Either cases are automatically run by the machine.

The third final learning process concerns the availability of new information, via
additional data collection. This induces a reiteration of the initial process whose final
outcome can lead to choose a different algorithm and tuning parameter(s), depending
on the nature of the incoming information.

As final step, one may combine predictions of single optimal learners into one single
super–prediction (ensemble learning). What is the advantage of this procedure? As
an average, this method cannot provide the largest accuracy possible. However, as
sums of i.i.d. random variables have smaller variance than the single addends, the
benefit consists of a smaller predictive uncertainty (Zhou, 2012; Escanciano et al.,
2014).

3 Application

We are interested in predicting the wage class of an individual based on her charac-
teristics2. We have data on 500 individuals from the National Longitudinal Survey
of Young Women (NLSW) in 1988. Our target dependent variable, wage class, is
categorical with three classes of hourly wage: low, medium, and high. As individ-
ual features, we consider: age: age of the woman; race: race of the woman (white,
black, other); married: married vs. non–married; never married: whether or not
never married; grade: grade obtained at school final exam; south: whether or not
the woman comes from the South; smsa: whether she lives in SMSA; c city: whether

2The SLM has been programmed in Python 3, using the Stata/Python integrated interface avail-
able in Stata 16. All codes are available on request.
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or not she lives in central city; collgrad: whether she is college graduated; hours:
usual hours worked; ttl exp: total work experience; tenure: job tenure in years;
industry: type of industry; occupation: type of occupation.

Figure 2: Learners and related tuning parameters.

Figure 2 sets out the eight learners considered by our SLM. Except the Naive
Bayes, all the other learners present at least one tuning parameter over which the
SLM optimizes. These learners are: Boosting, Decision tree, Naive Bayes, Nearest–
Neighbor, Neural Network, Random Forest, Regularized Multinomial, and Support
Vector Machine.

Figure 3 shows each learner’s test and training accuracy as a function of the
(main) tuning parameter, and identifies the optimal tuning parameter as the one
maximizing test accuracy. Focusing on the Decision Tree, for example, we clearly
observe the overfitting produced by increasing the number of leaves (i.e. a monotonic
increase of the training accuracy), which is optimal at a value of 7, where the test
accuracy is maximized. A similar pattern can be observed for the Nearest–Neighbor,
where the optimal numbers of leaves is 7. In this case, the overfitting occurs as a
function of 1/K, with K the number of nearest neighbors.

Figure 4 sets out a summary of the results and provides insights for the choice
of the classifier. The learner with the best accuracy is the Regularized Multinomial
obtaining an optimal accuracy of 62% which is the out–of–sample probability to
correctly classify the wage class of a new out–of–sample woman. The worst classifier
in this dataset is the Support Vector Machine with an accuracy of 46%.

Information on the accuracy’s standard error is also relevant, as allowing for deter-
mining accuracy confidence interval. In this regard, the column with heading “weight”
displays the value of 1/σLj

: the larger the weight, the more precise the estimate of the
accuracy. The Neural Network presents the largest weight (33), the worst one being
obtained by the Naive Bayes (6.28). Overall, the behavior of the Neural Network
in this dataset is quite good, as it performs well both in terms accuracy (59%) and
precision.

Finally, the row with heading “Overall” sets out the performance of the meta–
learner, taking the form of a majority vote classifier. It would reach an accuracy
of 56% with 95% confidence interval ranging between 51% and 60%, smaller than
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Figure 3: Learners’ test and training accuracy as a function of the main tuning parameter.

the one provided by the best learner (as seen, the Neural Network). This result was
expected as ensemble learners are purposely built for reducing estimation uncertainty,
generally at negligible expenses in terms of accuracy reduction.

4 Conclusion

As an ensemble ML toolbox, our SLM improves prediction in two directions: (i) by
model’s optimal tuning ; (ii) by comparing and combining results from a many learners.
Our economic application shows that different learners have different performance,
both in terms of accuracy and variability. Combining learners into a singleton super–
learner preserves reasonable accuracy by allowing lower variance than stand-alone
approaches.
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Figure 4: Predictive accuracy meta analysis.
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