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Chapter 1

Optimization with the
Quasi-Newton Method

One of the first problems to which Sir Isaac Newton applied calculus was the
optimization of a function. He observed that the extremum of a function is
characterized by its derivatives being equal to zero. For example, for the ordinary least
squares problem

f(B) = yty − 2Bxty + BtxtxB

is a multivariate quadratic function of a vector of coefficients. The extremum, i.e., the
value of B for which f(B) is either maximum or minimum, is found by setting the
derivative of f(B)

f ′(B) = −2x′y + x′xB

with respect to B to zero and solving for B

Bm = (xtx)−1xty

Finding such an extremum for nonquadratic functions is not so easy. In general a
simple closed form solution is not available as it is in the least squares problem. For
this kind of problem Newton proposed an iterative solution: first we look at a local
quadratic approximation to the nonlinear function and find its extremum, and then
generate a new local approximation and so on. For the local approximation we use a
Taylor series approximation about some given point x˙k on the function’s surface,

f(x) = f(xm) + f ′(xm)(x− xm) +
1
2
(x− xm)f ′′(xm)(x− xm)
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1. OPTIMIZATION WITH THE QUASI-NEWTON METHOD

In the same manner as above we calculate the derivatives, set to zero, and solve for x:

f ′(x) = f ′(xm) + f ′′(xm)(x− xm) = 0

x = xm − [f ′′(xm)]−1f ′(xm)

If the function is quadratic, we arrive at the extremum in a singel step, i.e., x is the
solution. If the function is not quadratic, we must solve for the solution iteratively, that
is we set xm equal to x and compute a new x

xm+1 = xm − δm

where

δm = [f ′′(xm)]−1f ′(xm) = H−1
m gm

is called the direction. The direction is a vector describing a segment of a path from the
starting point to the solution were the inverse of the Hessian, Hm determines the
“angle” of the direction and the gradient, gm determines its “size”.

When the approximation is good, the Hessian is well-conditioned and the convergence
quadratic (Dennis and Schnabel, 1989, Theorem 2.1.1) which roughly speaking means
that the number of places of accuracy doubles at each step (Gill, Murray, and Wright,
1981). Quite often, however, the function being optimized is not particularly well
behaved in the region of x˙m. This point might be far from the optimum and the surface
in that region might be poorly approximated by the quadratic function. An additional
step is introduced in the iterations to deal with this. The Newton step is re-defined as

xm+1 = xm − αmδm

where αm is called the step length. The step length is determined by a local
optimization of the function, called a line search, that is given the direction and the
starting point

f(xm − αmδm)

is a scalar function of the step length. Depending on the type of line search, this
function will be either minimized or some value of αm is found such that
f(xm − αmδm) < f(xm).

The Newton method is simple and straightforward to describe, but there are a number
of issues that arise in actual application. The first issue devolves from the fact that a
function for computing an analytical Hessian is almost hever available.
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1. OPTIMIZATION WITH THE QUASI-NEWTON METHOD

1.0.1 The Quasi-Newton Method

Since a function for computing the Hessian used in computing the direction is rarely
available, attention has focused on computing it numerically. The calculation of the
Hessian is very expensive computationally, however, and efforts were made to find a
way to produce the Hessian more cheaply. The critical insight from which came the
current quasi-Newton methods was made by Broyden (1969): use informatoin from the
current iteration to compute the new Hessian. Let

sk = xm+1 − xm = αmδm

be the chane in the parameters in the current iteration, and

ηm = gm+1 − gm

be the change in the gradients. Then a natural estimate of the Hessian at the next
iteration Hm+1 would be the solution of the system of linear equations

Hm+1sm = etam

that is, Hm+1 is the ratio of the change in the gradient to the change in the
parameters. This is called the quasi-Newton condition. There are many solutions to
this set of equations. Broyden suggested a solution in the form of a secand update

Hm+1 = Hm + uvt

Further work has developed other types of secant updates, the most important of which
are the DFP (for Davidon, 1959, and Fletcher and Powell, 1963), and the BFGS (for
Broyden, 1969, Fletcher, 1970, Goldfarb, 1970, and Shanno, 1970). The BFGS is
generally regarded as the best performing method:

Hm+1 = Hm +
ηmηt

m

ηt
msm

− Hmsmst
mHm

st
mHmsm

= Hm +
ηmηt

m

ηt
msm

− gmgt
m

δt
mgm

taking advantage of the fact that Hmsm = αmHmδm = αmgm. The BFGS method is
used in the GAUSS function QNEWTON. However, the update is made to the
Cholesky factorization of H rather than to the Hessian itself, that is to R where
H = RtR. In QNEWTON H itself is not computed anywhere in the iterations. The
direction δm is computed using CHOLSOL, that is as a solution to

Rt
mRmδm = gm

where Rm and gm are its arguments, and Rm is the Cholesky factorization of Hm.
Then Rm+1 is computed as an update and a downdate to Rm using the GAUSS
functions CHOLUP and CHOLDN.
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CHOLUP and CHOLDN

Suppose one was using a Cholesky factorization of a moment matrix computed on a
data set in some analytical method. Then suppose you have acquired an additional
observation. The Cholesky factorization could be re-computed from the original data
set augmented by the additional row. Such a complex and time consuming
computation is not necessary. Numerical methods have been worked out to compute
the new updated factorizatoin with the new observation without having to re-compute
the moment matrix and factorization from scratch. This update is handled by the
GAUSS CHOLUP function. In a similar way a Cholesky factorization can be
downdated, i.e., a new factorization is computed from a data set with one observation
removed. In either of these functions there are two arguments, the original factorization
and the observation to be added or removed.

Now back to the BFGS secant update in the quasi-Newton method. The factorization
Rm+1 is generated by first adding the “observation”,

ηm/
√

ηt
msm

and then removing the “observation”

gm/
√

δt
mgm

Line Search

Line search is the method by which some value for αm is found such that
f(xm − αmδm) < f(xm). Some common methods are step halving, golden section
search, random, and polynomial fit. There are known example where optimizations will
fail by setting αm = 1 for all iterations (Dennis and Schnabel, 1983, page 163) and thus
the line search is an essential part of the quasi-Newton optimization. In step halving,
αm is set first to 1, and f(xm − αmδm) is tested for a decrease. If the test fails, αm is
divided by 2 and the test is tried again. This continues until a decrease in the function
occurs and the final value of αm is then the required step length. For quick and dirty
optimization, this method can work quite well. In general, however, a method that
finds some kind of optimum value will help the optimization best.

In the golden section method (Gill, Murray, and Wright, 1981), an interval is defined
for αm ∈ [0, 1], then trial values are selected at t and (1− t) where t = .618 (t is the
solution of the quadratic function t2 + t− 1. A new interval is then defined at [0, 1− t]
if f(xm − (1− t)δm) is less than f(xm − tδm) and [t, 1] otherwise. This is repeated in
the next interval until some criterion is met such as f(xm − αmδm) < f(xm) or
f(xm − tδm) and f(xm − (1− t)δm) are sufficiently close together.

The primary line search in QNEWTON is one developed by Dennis and Schnabel,
1981, called STEPBT. It is a polynomial search method. First, αm = 1 is tried, and if
the reduction in the function is sufficient, that is, if

[f(xm − δ)− f(xm)]/δt
mgm < 1e− 4
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1. OPTIMIZATION WITH THE QUASI-NEWTON METHOD

then the step length is set to one and the iterations continued. If not a quadratic
function is fit to f(xm − αmδm) using f(xm), gm, f(xm − δm), i.e., using the falues of
f() where αm = 0, αm = 1, and the gradient evaluated where αm = 0. If the value of
αm at the minimum of that quadratic passes a criterion, that value is selected for the
step length, but if not, a cubic is fit to the above information plus an additional
evaluation of the function with αm set to a specified value. If that fails, new
evaluations of the function with trial values of the step length are set to the value found
in the cubic fitting. This continues either until a step length is found that satisfies the
criteria, or until 40 attempts have been made. If 40 attempts have been made without
finding a satisfactory step length, QNEWTON tries a random search. In the random
line search, random trial values of the step length from within a set radius are tried. If
any reduce the function, it is selected as the step length.

Convergence

From the formula for the direction δm, we see that progress in the iterations becomes
indescernable when the gradient approaches zero. This could be due either to the
iterations having converged or to poor scaling. The convergence criterion in
QNEWTON thus is a relative gradient, a gradient adjusted for scaling:

max|f(xm+1) · gi,m+1/xi,m+1| < gradtol

Condition

Computer arithmetic is fundamentally flawed by the fact that the computer number is
finite (see Higham, 1996, for a general discussion). The standard double precision
number in PC’s carries about 16 decimal significant places. A simple operation can
destroy nearly all of those places. For example, consider the Box-Cox transformation
(xλ − 1)/λ. With infinite precision this calculation approaches ln(x) as λ approaches
zero. But observe what happens with finite precision for x = 2:

λ 2λ (2λ − 1)/λ
1e-05 1.0000069314958282e+00 6.9314958281996286e-01
1e-06 1.0000006931474208e+00 6.9314742079384928e-01
1e-07 1.0000000693147204e+00 6.9314720407831487e-01
1e-08 1.0000000069314718e+00 6.9314718409430043e-01
1e-09 1.0000000006931471e+00 6.9314709527645846e-01
1e-10 1.0000000000693148e+00 6.9314776141027323e-01
1e-11 1.0000000000069316e+00 6.9315664319447023e-01
1e-12 1.0000000000006932e+00 6.9322325657594774e-01
1e-13 1.0000000000000693e+00 6.9277916736609768e-01
1e-14 1.0000000000000069e+00 6.8833827526759706e-01
1e-15 1.0000000000000007e+00 6.6613381477509392e-01
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1. OPTIMIZATION WITH THE QUASI-NEWTON METHOD

Until λ reaches about 1e− 11 the function is converging nicely to
ln(2) = 0.693147180559945. After that point, however, the convergence clearly falls
apart. Observe that as λ gets smaller the informative decimal places in 2λ slip away
until by λ = 1e− 16 there’s only one informative decimal place left and its rounded.

This problem is due to the finiteness of the computer number, not to the
implementation of the operators. The calcualtion of 2λ is equivalent to adding a
progressively smaller number to 1. Suppose we have a very small number known to 15
places of precision, .999999999999999e− 15. Adding 1 to that number we get
1.000000000000001, in other words, 14 of the 15 places in the smaller number are
completely lost. It is an inherent problem in all computers and the only solution,
adding more bits to the computer number, is only temporary because sooner or later a
problem will arise where that quantity of bits won’t be enough. The first lesson to be
learned from this is to avoid operations combining very small numbers with relatively
large numbers. And for very small numbers, 1 can be a large number.

The key quantity in the Newton methods, including the quasi-Newton, are the
derivatives. The calculation of the direction involves an inversion and a matrix
multiplication. A direct inversion is avoided by using a solve algorithm, but that only
alleviates the problem, it doesnt do away with it. The standard method for evaluating
the precision lost in computing a matrix inverse is the ratio of the largest to the
smallest eigenvalue of the matrix. This quantity is sometimes called the condition
number. The log of the condition number to the base 10 is approximately the number
of decimal places lost in computing the inverse. A condition number greater than 1e16
therefore indicates that all of the 16 decimal places are lost that are available in the
standard double precision floating point number.

The quasi-Newton optimization method has been successful primarily because its
method of generating an approximation to the Hessian encourages better conditioning.
Nearly all implementations of the Newton method involve a numerical calculation of
the Hessian. A numerical Hessian, like all numerical derivatives, are computed by
dividing a difference by a very small quantity, a very unfavorable computational
method on a computer. In general, when using double precision with 16 places of
accuracy, about four places are lost in calculating a first derivative and another four
with the second derivative. The numerical hessian therefore begins with a loss of eight
places of precision. If there are any problems computing the function itself, or if the
model itself contains any problems of condition, there may be nothing left at all.

The BFGS method implemented in QNEWTON avoids much of the problems in
computing a numerical Hessian. It produces an approximation by building information
slowly with each iteration. Initially the Hessian is set tot he identity matrix, the matrix
with the best conditoin but the least information. Information is increased at each
iteration with a method that guarantees a positive definite result. This provides for
stabler, though slower, progress towards convergence.

The implemenation of QNEWTON has been designed to minimize the damage to the
precision of the optimization problem. The BFGS method avoids a direct calculation of
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1. OPTIMIZATION WITH THE QUASI-NEWTON METHOD

the numerical Hessian, and uses sophisticated techmiques for calculating the direction
that preserve as much precision as possible. However, all of this can be defeated by a
poorly scaled problem or a poorly specified model. When the objective function being
optimized is a log-likelihood, the inverse of the Hessian is an estimate of the covariance
matrix of the sampling distribution of the parameters. The condition of the Hessian is
related to (i) the scaling of the parameters, and (ii) the degree with which there are
linear dependencies in the sampling distribution of the parameters.

Scaling

Scaling is under the direct control of the investigator and should never be an issue in
the optimization. It might not always be obvious how to do it, though. In estimation
problems scaling of the parameters is usually implemented by scaling the data. in
regression models this is simple to accomplish, but in more complicated models it might
be more difficult to do. It might be necessary to experiment with different scaling to
get it right. The goal is to optimize the condition of the hessian. The definition of the
condition number implies that we endeavor to minimize the difference of the largest to
the smallest eigenvalue of the Hessian. A rule of thumb for this is to scale the Hessian
so that the diagonal elements are all about the same magnitude.

If the scaling of the Hessian proves too difficult, an alternative method is to scale the
parameters directly in the procedure computing the log-likelihood. Multiply or divide
the parameter values being passed to the procedure by setting quantities before their
use in the calculation of the log-likelihood. Experiment with different values until the
diagonal elements of the Hessian are all about the same magnitude.

Linear dependencies or nearly linear dependencies in the sampling distribution.

This is the most common difficulty in estimation and arises because of a discrepancy
between the data and the model. If the data do not contain sufficient information to
“identify” a parameter or set of parameters, a linear dependency is generated. A simple
example occurs in regressors that cannot be distinquished from the constant because its
variation is too small. When this happens, the sampling distribution of these two
parameters becomes highly collinear. This collinearity will produce an eigenvalue
approaching zero in the Hessian, increasing the number of places lost in the calculation
of the inverse of the Hessian, degrading the optimization.

In the real world the data we have available will frequently fail to contain the
information we need to estimate all of the parameters of our models. This means that
it is a constant struggle to a well-conditioned estimation. When the condition
sufficiently deteriorates to the point that the optimization fails, or the statistical
inference fails through a failure to invert the Hessian, either more data must be found,
or the model must be re-specified. Re-specification means either the direct reduction of
the parameter space, that is, a parameter is deleted from the mdoel, or some sort of
restriction is applied to the parameters.

7
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Diagnosing the linear dependency.

At times it may be very difficult to determine the cause of the ill-conditioning. If the
Hessian being computed at convergence for the covariance matrix of the parameters
fails to invert or is very ill-conditioned, try the following: first generate the pivoted QR
factorization of the Hessian,

{ R,E } = qre(H);

The linearly dependent columns of H are pivoted to the end of the R matrix. E
contains the new order of the columns of H after pivoting. The number of linearly
dependent columns is found by looking at the number of nearly zero elements at the
end of the diagonal fo R.

We can compute a coefficient matrix of the linear relationship of the dependent
columns on the remaining columns by computing R−1

11 R12 where R11 is that portion of
the R matrix associated with the independent columns and R12 the independent with
dependent. Rather than use the inverse function in GAUSS, we use a special solve
function that takes advantage of the triangular shape of R11. Suppose that the last two
elements of R are nearly zero, then

r0 = rows(R);
r1 = rows(R) - 1;
r2 = rows(R) - 2;
B = utrisol(R[1:r2,r1:r0],R[1:r2,1:r2);

B describes the linear dependencies among the columns of H and can be used to
diagnose the ill-conditioning in the Hessian.
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