Italian Stata User Group – XVIII Conference Florence, Italy May 9-10, 2024

Structural Equation Modelling with Partial Least Squares using Stata

Sergio Venturini sergio.venturini@unicatt.it

Mehmet Mehmetoglu mehmet.mehmetoglu@ntnu.no Università Cattolica del Sacro Cuore Via Bissolati 74 26100 Cremona Italy

NTNU – Norwegian University of Science and Technology 517, Dragvoll NO-7491 Trondheim Norway

Overview

- 1. What is Partial Least Squares Structural Equation Modeling (PLS-SEM)?
- 2. The PLS-SEM algorithm
- 3. The **plssem** *Stata* package
- 4. Future directions

- PLS-SEM can be seen as:
 - The partial least squares (PLS) approach to structural equation modeling (SEM)
 - A statistical method for studying complex multivariate relationships among observed and latent variables
 - A data analysis approach for studying blocks of observed variables in which each block can be summarized by a latent variable and linear relations between the latent variables are assumed

- PLS-SEM originates from the work of Herman Wold
- In the 1960s and 1970s Wold developed a set of iterative algorithms based on least squares that nowadays are referred to as partial least squares (PLS)
- PLS methods encompass a broad spectrum of both explanatory and exploratory multivariate techniques, ranging from regression to path modeling, and from principal component to multi-block data analysis

- PLS-SEM is frequently seen as an alternative approach to classical *covariance-based SEM* (COV-SEM):
 - they aim at studying the interdependencies among a set of *unobserved* latent variables (LVs), each of which is measured through a different set of *observed* (or *manifest*) variables (MVs)
 - they involve a *measurement* (or *outer*) *model* relating the latent variables to the corresponding manifest variables, and a *structural* (or *inner*) model providing the relations among the latent variables
 - both are typically specified using a *path diagram*

• The main differences between the two approaches are:

<u>COV-SEM</u>	PLS-SEM
it aims at reproducing the observed covariance matrix of the manifest variables	it aims at maximizing the explained variance of the endogenous latent variables
the model is estimated using maximum likelihood	the model is estimated using an iterative algorithm that involves ordinary least squares
it is typically used for theory testing	it is typically used for predictive purposes

- Both the structural and measurement models involve linear specifications:
 - In the structural model a generic endogenous LV y_j is linked to the corresponding latent predictors through the multiple linear regression model

$$y_j = \beta_{0j} + \sum_{m=1}^{M_j} \beta_{jm} y_{m \to j} + \delta_j$$

 In the measurement model, the relation between each MV x_k and the corresponding LV is generally modeled as

 \circ reflective blocks → $x_k = \lambda_{0k} + \lambda_{jk}y_j + \epsilon_k$

○ formative blocks →
$$y_j = w_{0k} + \sum_h w_{jh} x_h + \zeta_j$$

The PLS-SEM algorithm

- Different software packages are available for fitting PLS-SEM models, both commercial (e.g. SmartPLS, ADANCO) and open-source (e.g. cSEM, SEMinR)
- While Stata has a very nice suite of commands for COV-SEM, nothing is available for PLS-SEM
- To fill the gap, some years ago we started the development of a Stata package for PLS-SEM called plssem
- The project is open-source and it can be installed from one of the author's GitHub account (<u>https://github.com/sergioventurini/plssem</u>)

- The package provides:
 - estimation commands
 - plssem → implements the standard PLS-SEM algorithm
 - plssemc → implements the consistent PLS-SEM (PLSc) algorithm
 - plssemmat
 matrix-based version of plssem
 - plssemcmat → matrix-based version of plssemc
 - post-estimation commands
 - estat → computes many goodness of fit and diagnostic measures
 - plssemplot

 creates some graphs for visualizing the results
 - predict → computes the predicted values and residuals

```
Q
                  help plssem
                                                     Dialog ~
                                                              Also see ~
                                                                         Jump to ~
Title
    plssem — Partial least squares structural equation modelling (PLS-SEM)
<u>Syntax</u>
    Partial least squares structural equation modeling of data
        plssem (LV1 > indblock1) (LV2 > indblock2) (...) [if] [in] [,
            structural(LV2 LV1, ...) options]
    Partial least squares structural equation modeling of adjacency matrices
        plssemmat adjmeas matname [if] [in] [, structural(adjstruc matname)
               options]
    adjmeas_matname is a Q x P matrix providing the adjacency matrix for the
        measurement model, while adjstruc_matname is a P x P matrix providing
        the adjacency matrix for the structural model (Q denotes the number
        of indicators and P the number of latent variables in the model).
```

```
\bullet \bullet \bullet < >
                                                                                 Q
                   help plssemc
                                                      Dialog ~
                                                                Also see ~
                                                                           Jump to ~
Title
    plssemc — Consistent partial least squares structural equation modelling
                (PLSc)
Syntax
    Consistent partial least squares structural equation modeling of data
        plssemc (LV1 > indblock1) (LV2 > indblock2) (...) [if] [in] [,
            structural(LV2 LV1, ...) options]
    Consistent partial least squares structural equation modeling of
    adjacency matrices
        plssemcmat adjmeas_matname [if] [in] [, structural(adjstruc_matname)
               options]
    adjmeas_matname is a Q x P matrix providing the adjacency matrix for the
        measurement model, while adjstruc matname is a P x P matrix providing
        the adjacency matrix for the structural model (Q denotes the number
        of indicators and P the number of latent variables in the model).
```

	Dialog v Also see v Jump to		
options	Description		
<u>w</u> scheme(centroid)	use the centroid weighting scheme		
<u>w</u> scheme(factorial)	use the factorial weighting scheme		
<u>w</u> scheme(path)	use the path weighting scheme; the default		
<u>bin</u> ary(<i>namelist</i>)	list of latent variables to fit using logit		
<u>b</u> oot(<i>numlist</i>)	number of bootstrap replications		
<u>s</u> eed(<i>numlist</i>)	bootstrap seed number		
<u>t</u> ol(#)	tolerance; default is 1e-7		
<u>max</u> iter(#)	maximum number of iterations; default is 100		
<u>miss</u> ing(mean)	impute the indicator missing values using the mean		
	of the available indicators		
<u>miss</u> ing(knn)	impute the indicator missing values using the k-th		
	nearest neighbor method		
k(#)	number of nearest neighbors to use with		
	<pre>missing(knn); default is 5</pre>		
init(eigen)	initialize the latent variables using factor		
init(indsum)	initialize the latent variables using the sum of		
	indicators; the default		
<u>dig</u> its(#)	number of digits to display; default is 3		
no <u>head</u> er	suppress display of output header		
no <u>meas</u> table	suppress display of measurement model estimates		
	table		
no <u>discrim</u> table	suppress display of discriminant validity table		
no <u>struct</u> table	suppress display of structural model estimates table		

	Dialog ~ Also see ~	Jump to N		
<u>loadp</u> val	show the outer loadings' p-values			
<u>stat</u> s	<pre>print a table of summary statistics for the indicators</pre>			
<u>gr</u> oup()	perform multigroup analysis; see <i>Options</i> for details			
<u>corr</u> elate()	report the correlation among indicators, latent			
	variables and cross loadings; see <i>Options</i> for details			
<u>raw</u> sum	estimate the latent scores as the raw sum of the indicators			
no <u>sc</u> ale	manifest variables are not standardized before			
	running the algorithm			
<u>conv</u> crit(relative)	relative convergence criterion; the default			
<u>conv</u> crit(square)	square convergence criterion			
<u>ord</u> inal(<i>varlist</i>)	list of ordinal indicators			
<u>rob</u> ust(none)	<pre>use non-robust correlation measures (see below more details)</pre>	for		
<u>rob</u> ust(spearman)	use the Spearman rank correlation measure			
<u>rob</u> ust(mcd)	use a robust correlation measure (minimum covar	iance		
	determinant, MCD)			

● ● ● 〈 〉 help plsser	m		
	Dialog ~ Also see ~ Jump to ~		
<u>Stored results</u>			
plssem stores the follo	owing in e():		
Scalars			
e(N)	number of observations		
e(reps)	number of bootstrap replications		
e(n_inadmissibles)	number of inadmissable bootstrap replications		
e(iterations)	number of iterations to reach convergence		
e(tolerance)	chosen tolerance value		
e(maxiter)	maximum number of iterations allowed		
e(converged)	equal to 1 if convergence is achieved; 0 otherwise		
e(k_aux)	number of auxiliary variables		
e(df_m)	model degrees of freedom		
Macros			
e(cmd)	plssem		
e(cmdline)	command as typed		
e(vce)	type of the variance-covariance matrix of the estimators		
e(estat_cmd)	program used to implement estat		
e(predict)	program used to implement predict		
e(title)	title in estimation output		

● 〈 〉 help plssem		(
	Dialog v	Also see ~ Jump to	
Matrices			
e(b)	coefficient vector		
e(V)	variance-covariance matrix of the estimators		
e(loadings)	outer loadings matrix		
e(loadings_bs)	bootstrap-based outer loadings (available only if the boot() chosen)) option is	
e(loadings_se)	matrix of the outer loadings standard errors		
e(cross_loadings)	cross loadings matrix		
e(cross_loadings_bs)	bootstrap-based cross loadings matrix (available only if the boot() option is chosen)		
e(cross_loadings_se)	matrix of the cross loadings st	tandard errors	
e(adj_meas)	adjacency matrix for the measurement (outer) model		
e(outerweights)	matrix of outer weights		
e(ow_history)	matrix of outer weights evolution		
e(relcoef)	matrix of reliability coefficients		
e(sqcorr)	matrix of squared correlations among the latent variables		
e(ave)	vector of average variances ext	tracted	
e(struct_b)	path coefficients matrix (short	t form)	
e(struct_se)	<pre>ruct_se) matrix of path coefficients' standard errors</pre>		

			m_postestimation		
			Dialog v	Also see 🗸	Jump to
1.					
<u>le</u>					
plss	em postest	imation -	 Postestimation tools for plssem 		
testi	.mation com	mands			
	-	postestin	nation commands are of special inte	erest after	
plss					
Comm	and		Description		
es	tat indire	ct	estimation and inference for indi	irect effec	ts
	tat total		decomposition of total effects		
es	tat mediat	e	testing of a mediation effect		
* es	tat vif		variance inflation factors for th	ne structur	al
			model equations sample		
* es	tat unobsh	et	unobserved heterogeneity assessme	ent	
es	tat htmt		heterotrait-monotrait ratio of co assessing discriminant validity		for
es	tat ci		confidence intervals for all mode	el's coeffi	cients
es	tat f2		Cohen's f^2 effect sizes		
es	tat ic		model's information and selectior	n criteria	
	tat dist		model's distance measures		
es	tat blindf	olding	blindfolding procedure		
* es	tat vif ar	d estat u	unobshet are not available for mode	els fitted	using
	otstrap.				5
The	following	standard	postestimation commands are also a	available:	
Comm	and	ſ	Description		
predict f			fitted values and residuals		

● ●				
	Dialog ~	Also see 🗸	Jump to 🗸	
<u>Title</u> plssemplot — Graph r	esults from <mark>plssem</mark> (loadings plots,	etc.)		
<u>Syntax</u> plssemplot [, opt	ions]			
options	Description			
<u>in</u> nermodel <u>out</u> ermodel	plot the structural (inner) model relationships plot the measurement (outer) model relationships (not yet implemented)			
<u>st</u> ats(<i>varname</i>)	produce the scatterplot matrix for the indicators of the selected latent variables			
<u>sc</u> ores	produce the scatterplot matrix of the latent variables scores			
<u>c</u> rossloadings <u>l</u> oadings <u>outerw</u> eights <u>Description</u>	plot the model's cross loadings plot the model's outer loadings plot the model's outer weights con	vergence pa	th	

Future directions

- We continue actively developing the package and we are planning to expand it in different directions:
 - moderated mediation
 - nonlinear effects in the structural model
 - multiple imputation
 - graphical interface to interactively specify the entire model, similar to Stata's sembuilder for COV-SEM call for collaborations!!!

References

- 1. Esposito Vinzi, V., Russolillo, G. 2013. Partial least squares algorithms and methods. *WIREs Computational Statistics*, 5, 1-19.
- 2. Esposito Vinzi, V., Trinchera, L., Squillacciotti, S., Tenenhaus, M. 2008. REBUS-PLS: a response-based procedure for detecting unit segments in PLS path modeling. *Applied Stochastic Models in Business and Industry*, 24, 439-458.
- 3. Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M. 2017. *A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM)*. 2nd edition. Sage.
- 4. Hair, J. F., Sarstedt, M., Ringle, C. M., Gudergan, S. P. 2017. Advanced Issues in Partial Least Squares Structural Equation Modeling. Sage.
- 5. Mehmetoglu, M., Venturini, S. 2021. *Structural Equation Modelling with Partial Least Squares Using Stata and R.* CRC Press
- 6. Monecke, A., Leisch, F. 2012. **semPLS**: Structural Equation Modeling Using Partial Least Squares. *Journal of Statistical Software*, 48, 3, 1-32.
- 7. Sanchez, G. 2013. *PLS Path Modeling with R*. Trowchez Editions.
- 8. Sanchez, G., Trinchera, L., Russolillo, G. 2015. plspm: Tools for Partial Least Squares Path Modeling (PLS-PM). R package version 0.4.7.
- Venturini, S., Mehmetoglu, M. 2019 plssem: A Stata Package for Structural Equation Modeling with Partial Least Squares. *Journal of Statistical Software*, 88, 8, 1-35.